Hidden node activation differential-a new neural network relevancy criteria
نویسندگان
چکیده
Neural networks have been used in many problems such as character recognition, time series forecasting and image coding. The generalisation of the network depends on its intemal structure. Network parameters should be set correctly so that data outside the class will not be overfitted. One mechanism to achieve an optimal neural network structure is to identify the essential components (hidden nodes) and to prune off the irrelevant ones. Most of the proposed criteria used for pruning are expensive to compute and impractical to use for large networks and large training samples. In this paper, a new relevancy criteria is proposed and three existing criteria are investigated. The properties of the proposed criteria are covered in detail and their similarities to existing criteria are illustrated.
منابع مشابه
Designing an expert system for differential diagnosis of β-Thalassemia minor and Iron-Deficiency anemia using neural network
Introduction: Artificial neural networks are a type of systems that use very complex technologies and non-algorithmic solutions for problem solving. These characteristics make them suitable for various medical applications. This study set out to investigate the application of artificial neural networks for differential diagnosis of thalassemia minor and iron-deficiency anemia. Methods: It is...
متن کاملNumerical solution of elliptic partial differential equation using radial basis function neural networks
In this paper a neural network for solving partial differential equations is described. The activation functions of the hidden nodes are the radial basis functions (RBF) whose parameters are learnt by a two-stage gradient descent strategy. A new growing RBF-node insertion strategy with different RBF is used in order to improve the net performances. The learning strategy is able to save computat...
متن کاملEstimating river suspended sediment yield using MLP neural network in arid and semi-arid basins Case study: Bar River, Neyshaboor, Iran
Abstract Erosion and sedimentation are the most complicated problems in hydrodynamic which are very important in water-related projects of arid and semi-arid basins. For this reason, the presence of suitable methods for good estimation of suspended sediment load of rivers is very valuable. Solving hydrodynamic equations related to these phenomenons and access to a mathematical-conceptual mode...
متن کاملDesigning of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network
Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...
متن کاملEstimating Efficiency of Monocrystalline and Polycrystalline Photovoltaic Panels Using Neural Network Models
The energy production analysis of a photovoltaic system depends on the panels tempreture and solar radiation. An endless and free source of solar energy received at the Earth's surface depends on the geographical location, different hours of day and seasons of the year.Hence, its correct evaluation is a strategic factor for the feasibility of a solar system. in this paper, a new method of ener...
متن کامل